A team of researchers led by Virginia Commonwealth University College of Engineering and the University of Florida has found a possible mechanical explanation for how cell structure and tissue can be disrupted, VCU reports. The findings could provide clues into what happens in diseases such as cancer.

Daniel Conway, Ph.D., associate professor in the Department of Biomedical Engineering, is investigating the role of mechanical forces on cells and what makes normal cells stable, according to the article.

Epithelial cells, which separate the body from the outside environment and provide barriers between different areas inside organs such as the liver, are critical for tissue and organ function. Problems with these cells are linked to defective wound healing and the development and progression of cancer.

Conway is a co-author of a study that identified the importance of a group of proteins known as the nuclear linker of nucleoskeleton to cytoskeleton (LINC) complex, which anchors the nucleus to the cellular cytoskeleton, the article states. Conway is a BMES member. 

The study using 3D culture models of acini, or cysts or spheroids, suggests that mechanically disrupting the LINC complex destabilizes the acini. The article will be published in Current Biology.

“We are interested in how the nucleus inside the cell is mechanically integrated into the cellular cytoskeleton,” Conway said. “If you disrupt the structure mechanically, the cells — and by extension, the tissue — are disturbed.”

Read more HERE