Potential of Osteoporosis Detection with a Microwave Wrist Tester

Johnathan W. Adams1, Gregory M. Noetscher1,2, Douglas Sondak3, Ara Nazarian4, Sergey N. Makarov1,2,51\textsuperscript{ECE Department, Worcester Polytechnic Inst., Worcester, MA 01609 USA, 2NEVA Electromagnetics, LLC, Yarmouth Port, MA 02675 USA, 3Wentworth Inst. of Technology, Boston, MA 02115, 4Beth Israel Deaconess Med. Center, Harvard Medical School, Boston, MA 02675, 5A. A. Martinos Center for Biomed. Imaging, Massachusetts General Hospital, Charlestown, MA 02129 USA

\section*{Introduction:}
Osteoporosis represents a major health problem, resulting in substantial increases in national health care costs. Current methods to detect osteoporosis rely upon ionizing techniques such as Dual-energy X-ray Absorptiometry (DXA) and Quantitative Computed Tomography (QCT). The objective of this study is to validate a low-cost non-ionizing method, which uses modern microwave technology, and to construct the corresponding premarket testbed.

\section*{Materials and Methods:}
The microwave wrist tester is shown in Fig. 1. It includes a movable frame with two 2X antenna arrays and pressure sensors. Antennas are connected to a Keysight FieldFox N9914A Network Analyzer. Wrist measurements are performed when pressure of 1 kg force is applied. Both reflection and transmission coefficients are measured over a frequency band. After obtaining WPI IRB approval, we enrolled 20 subjects (55-80 years of age) with a low bone density including osteopenia and osteoporosis. Additionally, we enrolled 20 healthy subjects (27-55 years of age). We measured left and right microwave wrist signature for every subject, including reflection coefficient S11 and transmission coefficient S21, over the frequency band 0.2-2.0 GHz. We also collected wrist circumference measures and BMI/age/gender data.

\section*{Results and Discussion:}
Fig. 2 indicates that there might be a significant difference in the response of normal and osteoporotic wrists. However, these data relate to the two subjects only. We will discuss application of a few imaging diagnostics machine learning algorithms for detection/classification of our frequency curves from 40 subjects. Our major challenge is the small sample size problem in training the AI system.

\section*{Translational Impact:}
We attempt to develop this promising microwave detection method since DXA is costly and time intensive. Many elderly people simply do not do the bone density test until the first fall.