RF-Exposure Conditions vs. Induced Heating with Interventional Catheters: A Computational Study

Micol Colella1, Elena Lucano1,2, Francesca Apollonio1, Qi Zeng3, Jingshen Liu3, Tom Lloyd4, Steve Wedan4, Ji Chen5, Wolfgang Kainz2, Micaela Liberti3, Leonardo M. Angelone5,7

1 Dept. of Information Engineering, Electronics, Telecommunications, University of Rome “Sapienza”, Rome, Italy; 2InsilicoTrialsTechnologies, Italy; 3Electrical and Computer Engineering, University of Houston, Houston, TX, USA; 4Imricor Medical Systems Inc., Burnsville, MN, USA; 5 Office of Science and Engineering Laboratories, Center for Devices and Radiological Health, US FDA, Silver Spring, MD, USA;

Introduction: Magnetic Resonance Imaging (MRI) is one of the most used imaging technologies; while MRI is considered a safe technology, there are still risks to patients that need to be controlled and mitigated. One of the risks is radiofrequency (RF)-induced heating of tissue, which is enhanced in the presence of conductive medical devices1. While there are guidelines and standards that help ensuring safety of patients with implanted medical devices2, currently there are no standards to address RF-induced heating during MRI in patients with partially implanted conductive devices (e.g., MR-guided cardiac ablation devices). The aim of this study was to assess how the specific configuration of the RF coil affects RF-induced heating with generic partially-implanted catheters.

Materials and Methods: The Transfer Function (TF) of a generic dual-wire lead was measured using the reciprocity approach3,4. Numerical simulations results with an anatomically realistic human body model (“Duke” of the Virtual Population5) exposed to thirty-two 64 MHz (1.5T) RF coil feeding conditions were implemented, by varying the polarization of the RF-field and the position of the feeding sources6. An insertion path of 35cm in depth inside the body model and of 85 cm outside the body (Fig. 1a) was selected for the analysis. The tangential component of the electric field, E_{tan}, along the path (Figure 1a) was extracted from the numerical simulations and used as input of the experimentally-calculated TF5. The temperature rise ΔT induced at the tip of a lead was thus calculated according to the following equation: $\Delta T = |\sum (\text{TF} \cdot E_{\text{tan}})|^2$, as shown in Fig. 1a.

Results and Discussion: Temperature rise varied with polarization and RF-coil feeding conditions. Moreover, for this specific setup, counterclockwise (CCW) polarization led to lower heating with respect to the clockwise (CW) one. The maximum temperature increase was below 50°C for all the cases. Results suggest that the specific feeding conditions of the RF-coil need to be taken into account in the analysis of RF-induced heating.

Translational Impact: This is a preliminary study aiming to apply the TF approach to partially implanted devices to assess the effect of RF-source configuration on the temperature increase.

The mention of commercial products, their sources, or their use in connection with material reported herein is not to be construed as either an actual or implied endorsement of such products by the Department of Health and Human Services.