Biomedical tool that could help treat glioblastoma gets FDA Breakthrough Device designation

A biomedical tool that tricks aggressive brain tumors such as glioblastoma into migrating into an external container rather than throughout the brain has been designated a “Breakthrough Device” by the U.S. Food and Drug Administration, according to a Duke University article.
Dubbed the Tumor Monorail, the device mimics the physical properties of the brain's white matter to entice aggressive tumors to migrate toward the exterior of the brain, where the migrating cells can be collected and removed, the article states.

The purpose of the device is not to destroy the tumor, but to halt its lethal spread, making the disease more of a condition to manage than a death sentence.
Breakthrough designations from the FDA aim to expedite the development and review of drugs, diagnostics and devices aimed at life-threatening or irreversibly debilitating conditions, according to the article. While the designation does not mean that the device has been approved for clinical use, it does provide a partnership with the FDA that can speed development, assessment and review.
The Tumor Monorail first made headlines in 2014 in an initial exploratory study published in Nature Materials and led by researchers at Georgia Tech and Emory University that showed the concept was effective in rat models. A prototype device successfully played Pied Piper to glioblastoma cells, enticing them to migrate toward a repository filled with a toxic gel. The result was that the tumors' spread slowed and they shrank by more than 90 percent.
“This was the first demonstration that you can engineer migration inside the body and move a tumor from point A to point B by design,” said Ravi Bellamkonda, the Vinik Dean of the Pratt School of Engineering at Duke University, who began the research while at Georgia Tech. “It was also the first demonstration of bringing the tumor to your drug rather than your drug going into the brain and killing valuable cells.”

Bellamkonda is a BMES Fellow.

Read more HERE.