Technical Program



Abstracts are now being solicited that highlight the latest developments in best practice in computational modeling and simulation of medical devices.  Deadline for submission is November 28, 2018.  Abstract submission is now closed.

 

 
TRACK DESCRIPTIONS

Clinically Relevant Models 
In-silico medicine holds great promise to enable clinical procedures that are guided by reliable, patient specific outcome prediction.  The first step to effectively predict clinical outcomes is to develop digital models that mimic reality to the best of our knowledge and capabilities, and continuously improve as our understanding grows. Examples for this track include development of computer models that accurately represent the medical device, patient’s anatomy, patient’s physiology, or the interaction between the device and human body. Application areas such as computationally assisted medical imaging, surgical simulation and neuromodulation (both invasive and non-invasive) are of particular interest.   

Track chairs:
 
Laleh Golestani Rad 
Asst. Prof. of Biomedical Engineering & Radiology
Northwestern University
Website link


RESEARCH INTERESTS
Computational electromagnetics in magnetic resonance imaging
Computational modeling of electric and magnetic brain stimulation techniques
Deep brain stimulation neuroimaging
Neural engineering
Steve Levine 
Senior Director, Health and Life Sciences
Dassault Systèmes
Website link


RESEARCH INTERESTS
Living Heart Project
3DEXPERIENCE Labs for Life Science

 

Real World Data as Model Input
Using real world data for model construction and input is essential for patient specific simulation and a big step forward for ensuring that computational models appropriately represent reality.  However, challenges exist in data collection and applying the real world data to model intended context of use.  This track includes topics of real world data collection and interpretation, data infrastructure and security, sensitivity and uncertainty analyses, and validation of models with real world data inputs.  Applications of using real world data to demonstrate clinical safety are particularly welcomed.   

Track chairs:

 
Ethan Kung
Asst. Prof. of Mechanical Engineering
Clemson University
Website link


RESEARCH INTERESTS
Computational and experimental modeling of the cardiovascular system
Physiology-Modeling Coupled Experiments (PMCE)
Image-based computational fluid dynamics
Surgical design/planning/prediction
Medical device testing
Pediatric & congenital heart diseases
Exercise physiology
Tina Zhao 
Principal Engineer, THV Valve Testing
Edwards Lifesciences











 

Artificial Intelligence and Machine Learning in Medical Devices  
Artificial intelligence (AI) and machine learning hold big promise in transforming healthcare in the coming years.  This track includes applications of AI in medical device development in different areas including natural language processing (NLP) for mining medical data, imaging diagnostics algorithms for detection or classification, recommender systems, and pattern discovery from genomics data. Methods for overcoming the small sample size problem in training and testing of AI systems for medical applications, as well as ones that address interpretability and explainability of algorithm outputs are also of great interest.    

Track chairs:
 
Dave Hoadley
Principal Technical Consultant, Model-Based Design
MathWorks
Website link

RESEARCH INTERESTS
Model-Based Design
Design for medical devices

 
Aria Pezeshk 
Research Electrical Engineer, CDRH/OSEL/ DIDSR
Food and Drug Administration
Website link


RESEARCH INTERESTS
Deep learning research in the detection and classification of abnormalities in different imaging modalities (CT & Mammography)  
Management of GPU for deep learning
Evaluation of safety and effectiveness of medical devices using machine learning, algorithms, or computer vision
 

Digital Twins in Healthcare  
A digital twin is defined as a simulation of a product or process that interfaces with real-world information to mirror the performance of its corresponding physical twin.  A digital twin typically relies on mechanistic models, data analytics, and machine learning to represent its’ physical counterpart.  Sources of real-world data are equally diverse, including sensor data, historical information, and expert opinion.  The resulting digital twin can be used to ana­lyze and diagnose operational states and to optimize performance under real-world operating conditions.  This enables companies to make predictions about future performance, improve product operation and productivity, and reduce the cost and risk of unplanned downtime.    

Building on the success of other industries, the digital twin concept is now taking hold in the healthcare industry.  Unique to healthcare, digital twins for patients provide a platform for optimizing device performance during patient use.  Wearable medical devices are a current example of how patient data collected through the IoT combined with physiological models can optimize treatment for individual patients.  This track invites submissions that use digital twin concepts to improve the ability of medical devices and other therapies to treat patients more effectively and accurately.   

Track chairs:
 
Marc Horner
Technical Lead, Healthcare
ANSYS, Inc
Website link


RESEARCH INTERESTS
Design of medical devices 
Systems-level simulation
Multi-physics analysis: FEA & CFD
High- and low-frequency electromagnetics
Drew Pruett
Instructor, Physiology, and Biophysics
University of Mississippi Medical Center
Website link


RESEARCH INTERESTS
Mathematical modeling to study cardio-renal axis
Machine learning for data interpretation
Visualization of high dimensional data sets for pattern recognition
 

Assessing Credibility of Models  
Credibility is the trust in the predictive capability of a computational model for a specific context of use. Trust is gained by collecting evidence through verification, validation, and uncertainty quantification (VVUQ) activities. This track includes studies undertaken to demonstrate the credibility of computational modeling applied across the product lifecycle. Topics may include pre-clinical evaluation of medical devices, patient-specific modeling for clinical decision support, use of “software as a medical device,” post-market analyses, or any other area where VVUQ is leveraged to assess model credibility.   

Track chairs:
 
Payman Afshari 
Sr. Principal Engineer
DePuy Synthes J&J
Website link





 
Brent Craven 
Research Scientist, Division of Applied Mechanics
Food and Drug Administration
Website link


RESEARCH INTERESTS
Computational Fluid Dynamics
Medical Devices
Biofluid Dynamics and Transport Phenomena