Technical Program
Abstracts are now being solicited that highlight the latest developments in best practice in computational modeling and simulation of medical devices. Deadline for submission is November 28, 2018. Abstract submission is now closed.
TRACK DESCRIPTIONS
Clinically Relevant Models
In-silico medicine holds great promise to enable clinical procedures that are guided by reliable, patient specific outcome prediction. The first step to effectively predict clinical outcomes is to develop digital models that mimic reality to the best of our knowledge and capabilities, and continuously improve as our understanding grows. Examples for this track include development of computer models that accurately represent the medical device, patient’s anatomy, patient’s physiology, or the interaction between the device and human body. Application areas such as computationally assisted medical imaging, surgical simulation and neuromodulation (both invasive and non-invasive) are of particular interest.
Track chairs:
![]() Asst. Prof. of Biomedical Engineering & Radiology Northwestern University Website link RESEARCH INTERESTS Computational electromagnetics in magnetic resonance imaging Computational modeling of electric and magnetic brain stimulation techniques Deep brain stimulation neuroimaging Neural engineering |
![]() Senior Director, Health and Life Sciences Dassault Systèmes Website link RESEARCH INTERESTS Living Heart Project 3DEXPERIENCE Labs for Life Science |
Real World Data as Model Input
Using real world data for model construction and input is essential for patient specific simulation and a big step forward for ensuring that computational models appropriately represent reality. However, challenges exist in data collection and applying the real world data to model intended context of use. This track includes topics of real world data collection and interpretation, data infrastructure and security, sensitivity and uncertainty analyses, and validation of models with real world data inputs. Applications of using real world data to demonstrate clinical safety are particularly welcomed.
Track chairs:
![]() Asst. Prof. of Mechanical Engineering Clemson University Website link RESEARCH INTERESTS Computational and experimental modeling of the cardiovascular system Physiology-Modeling Coupled Experiments (PMCE) Image-based computational fluid dynamics Surgical design/planning/prediction Medical device testing Pediatric & congenital heart diseases Exercise physiology |
![]() Principal Engineer, THV Valve Testing Edwards Lifesciences |
Artificial Intelligence and Machine Learning in Medical Devices
Artificial intelligence (AI) and machine learning hold big promise in transforming healthcare in the coming years. This track includes applications of AI in medical device development in different areas including natural language processing (NLP) for mining medical data, imaging diagnostics algorithms for detection or classification, recommender systems, and pattern discovery from genomics data. Methods for overcoming the small sample size problem in training and testing of AI systems for medical applications, as well as ones that address interpretability and explainability of algorithm outputs are also of great interest.
Track chairs:
![]() Principal Technical Consultant, Model-Based Design MathWorks Website link RESEARCH INTERESTS Model-Based Design Design for medical devices |
![]() Research Electrical Engineer, CDRH/OSEL/ DIDSR Food and Drug Administration Website link RESEARCH INTERESTS Deep learning research in the detection and classification of abnormalities in different imaging modalities (CT & Mammography) Management of GPU for deep learning Evaluation of safety and effectiveness of medical devices using machine learning, algorithms, or computer vision |
Digital Twins in Healthcare
A digital twin is defined as a simulation of a product or process that interfaces with real-world information to mirror the performance of its corresponding physical twin. A digital twin typically relies on mechanistic models, data analytics, and machine learning to represent its’ physical counterpart. Sources of real-world data are equally diverse, including sensor data, historical information, and expert opinion. The resulting digital twin can be used to analyze and diagnose operational states and to optimize performance under real-world operating conditions. This enables companies to make predictions about future performance, improve product operation and productivity, and reduce the cost and risk of unplanned downtime.
Building on the success of other industries, the digital twin concept is now taking hold in the healthcare industry. Unique to healthcare, digital twins for patients provide a platform for optimizing device performance during patient use. Wearable medical devices are a current example of how patient data collected through the IoT combined with physiological models can optimize treatment for individual patients. This track invites submissions that use digital twin concepts to improve the ability of medical devices and other therapies to treat patients more effectively and accurately.
Track chairs:
![]() Technical Lead, Healthcare ANSYS, Inc Website link RESEARCH INTERESTS Design of medical devices Systems-level simulation Multi-physics analysis: FEA & CFD High- and low-frequency electromagnetics |
![]() Instructor, Physiology, and Biophysics University of Mississippi Medical Center Website link RESEARCH INTERESTS Mathematical modeling to study cardio-renal axis Machine learning for data interpretation Visualization of high dimensional data sets for pattern recognition |
Assessing Credibility of Models
Credibility is the trust in the predictive capability of a computational model for a specific context of use. Trust is gained by collecting evidence through verification, validation, and uncertainty quantification (VVUQ) activities. This track includes studies undertaken to demonstrate the credibility of computational modeling applied across the product lifecycle. Topics may include pre-clinical evaluation of medical devices, patient-specific modeling for clinical decision support, use of “software as a medical device,” post-market analyses, or any other area where VVUQ is leveraged to assess model credibility.
Track chairs:
![]() Sr. Principal Engineer DePuy Synthes J&J Website link |
![]() Research Scientist, Division of Applied Mechanics Food and Drug Administration Website link RESEARCH INTERESTS Computational Fluid Dynamics Medical Devices Biofluid Dynamics and Transport Phenomena |